Enter your keyword

2-s2.0-84961721971

[vc_empty_space][vc_empty_space]

A genetic algorithm approach determining simultaneously location and capacity distributed generation in radial distribution system

Tyastuti R.F.a,b, Hariyanto N.b, Nurdin M.b, Khairudinc, Yasunori M.c

a PT. PLN (Persero), Jakarta, Indonesia
b School of Electrical and Informatics, Institut Teknologi Bandung, Indonesia
c Dept. Electrical and Electronic Engineering, Kyushu Institute of Technology, Japan

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 IEEE.Network reliability of distribution system is one of the key performance indices to be realized with many efforts. Installing Distribution Generation (DG) on radial distribution network closer to the customers is one of the efforts, which can improve the indices. This paper will present a GA method to determine the best location and capacity of DG placement with minimum power losses as an objective function to achieve optimum result. By DG placement in the network, except improve the voltage profile and power losses also the reliability indices such as SAIDI, SAIFI and EENS. Therefore the reliability will experience an improvement than before. For calculating and analyzing the reliability indices it uses ETAP 12.6 software which is separate analysis with determine the position and capacity optimization method. This concept will realize by simulating in the 132 bus radial distribution system and considering into two schemes, the base load scheme and full load scheme.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Dg placements,Distribution generation,Genetic algorithm approach,Key performance index,Radial distribution networks,Radial distribution systems,Reliability Index,Voltage profile[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]DG placement,losses,radial distribution system,Reliability indices,voltage profile[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEEI.2015.7352567[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]