Enter your keyword

2-s2.0-84962061470

[vc_empty_space][vc_empty_space]

Comparative studies on plutonium utilization in HTTR with helium and carbon dioxide gas coolants

Waris A.a, Prastyo P.A.a, Pramuditya S.a, Irwanto D.a, Sekimoto H.b

a Bandung Institute of Technology, Nuclear Physics and Biophysics Research Division, Department of Physics, Bandung, 40132, Indonesia
b Tokyo Institute of Technology, Meguro-ku, 152-8550, Japan

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Copyright © 2016, Hydrogen Energy Publications, LLC.A high temperature engineering test reactor (HTTR) has been developed and constructed by Japan Atomic Energy Research Institute (JAERI) since 1990s. The standard HTTR has been designed for helium coolant with thermal energy output of 30 MW. HTTR uses graphite as the moderator with outlet coolant temperature of 950°C. Instead of the pebble-bed type of fuel, the prismatic block fuel type with low enriched UO2 has been employed in this reactor. In this study we have performed comparative evaluations on plutonium oxide utilization in uranium fuel cycle of HTTR with helium gas and carbon dioxide gas coolants. The cell-burnup calculations have been performed by using a SRAC 2006 code, with the nuclear data library was derived from JENDL3.3. The 3-dimensional calculations were performed by employing a CITATION code. The results show that the reactor can achieve its criticality condition if the plutonium concentration in the loaded fuel is 5.0% or higher for both coolant materials.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Comparative evaluations,Comparative studies,Coolant temperature,Criticality condition,High temperature engineering test reactors,HTTR,Japan Atomic Energy Research Institutes,Nuclear data library[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Carbon dioxide,Coolant,Helium,HTTR,Plutonium,Uranium[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research is fully funded by Institut Teknologi Bandung Alumni Union (IA) Research Grant 2015 – 2016.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.ijhydene.2016.02.117[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]