Enter your keyword

2-s2.0-84963983914

[vc_empty_space][vc_empty_space]

Simulation of tablet dissolution rate on virtual USP dissolution apparatus

Putra N.K.a, Suprijantoa, Sudirham J.a, Wikarsa S.a

a Instrumentation and Control Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 IEEE.The dissolution test is largely conducted as the standard procedure on Pharmaceutical industry. This test is importantly used for assess the drug’s dissolution rate which strongly related to its medical efficacy. In this research, modeling and simulation of hydrodynamics interaction behavior from the tablet dissolution process on the USP Apparatus based on computational method are developed. This simulation works on a multiphysical interaction phenomenon which consists of several stages, started with the experimental testing of dissolution process, development of computational simulation and comparison between the simulation and the experimental results which has been tested on the laboratory of solid drug, school of pharmacy, ITB. This simulation is designed to mimic the dissolution process on USP apparatus which conducted with pharmacopoeia standard. On this experiment, the 1.23 mol/m3 pure theophylline tablet was tested on the apparatus which was stirred at 50 rpm. On this research, some of the tablet’s dissolution parameters can be well predicted such as diffusion coefficient, diffusion layer thickness and the pattern of drug’s surface shear stress.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Computational simulation,Diffusion layer thickness,Drug Design,Interaction behavior,Interaction phenomena,Model and simulation,Pharmaceutical industry,USP apparatus[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]computational method,drug design,modeling and simulation,USP apparatus[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICICI-BME.2015.7401386[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]