[vc_empty_space][vc_empty_space]
On Ramsey Minimal Graphs for the Pair Paths
Rahmadani D.a, Baskoro E.T.a, Assiyatun H.a
a Combinatorial Mathematics Research Group, Faculty of Mathematics, Natural Sciences Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]For any graphs G and H, we write F → (G, H) to means that in any red-blue coloring of all the edges of F, the graph F will contain either a red G or a blue H. A graph F is called a Ramsey (G,H)-minimal graph if F satisfies two conditions: F → (G, H), and F – → A (G, H) for every subgraph F – of F. The set of all Ramsey (G, H)-minimal graphs is denoted by R(G, H). In this paper, we construct some family of graphs which belong to R(P3, Pn), for any n ≥ 6. In particular, we give an infinite class of trees which provides Ramsey (P3, P7)-minimal graphs.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]path,Ramsey minimal graph,Red-blue coloring,Subgraphs,tree[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]path,Ramsey minimal graph,tree[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Acknowledgement. This research was supported by Research Grant ”Program Hibah PMDSU ITB-DIKTI”, Ministry of Research, Technology and Higher Education, Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.procs.2015.12.068[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]