Enter your keyword

2-s2.0-84964077482

[vc_empty_space][vc_empty_space]

The Bounds on the Locating-Chromatic Number for a Subdivision of a Graph on One Edge

Purwasih I.A.a, Baskoro E.T.a, Assiyatun H.a, Suprijanto D.a

a Combinatorial Mathematics Research Group, Faculty of Mathematics, Natural Sciences Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The study of locating-chromatic numbers has been done for many classes of graphs. Recently, Behtoei and Anbarloei (2014) presented the locating-chromatic number of wheels. Inspired by the result of Behtoei and Anbarloei, the authors (2012,2013) gave the locating-chromatic number of the subdivision of a wheel on one of its spoke or cycle edges. In this paper, we determine an upper bound on the locating-chromatic number of a subdivision of any connected graph on any one edge and show that the bound is tight. In particular, we give the lower bound for the locating-chromatic number of a subdivision of any graph on a pendant edge. Furthermore, we give the exact values of the locating-chromatic number of a subdivision of a complete and a star graph on any one edge.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Chromatic number,Connected graph,Lower bounds,pendant,Pendant edges,Star graphs,subdivision,Upper Bound[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Locating-chromatic number,pendant,subdivision[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Acknowledgement. This research was supported by Research Grant ”Program Riset Unggulan ITB-DIKTI”, Ministry of Research, Technology and Higher Education, Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.procs.2015.12.080[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]