Enter your keyword

2-s2.0-84964091586

[vc_empty_space][vc_empty_space]

Algorithm to Construct Graph with Total Vertex Irregularity Strength Two

Silaban D.R.a, Kekaleniate H.b, Lutpiah S.a, Sugeng K.A.a, Baskoro E.T.b

a Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
b Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]A total vertex irregularity strength of a graph G, tvs(G), is the minimum positive integer k such that there is a mapping f from the union of vertex and edge sets of G to {1, 2, ⋯, k} and the weights of all vertices are distinct. The weight of a vertex in G is the sum of its vertex label and the labels of all edges that incident to it. It is known that tvs(Kn) = 2. In this paper, we construct graphs with tvs equal to 2 by removing as much as possible edges from Kn, with and without maintaining the outer cycle Cn of Kn. To do so, we give two algorithms to construct the graphs, and show that the tvs of the resulting graph is equal to 2.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Complete graphs,cycle,Edge-sets,Graph G,Irregularity strength,Positive integers[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]algorithm,complete graph,cycle,Total vertex irregularity strength[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.procs.2015.12.088[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]