[vc_empty_space][vc_empty_space]
Kinetic study on the SO2 adsorption using CuO/Γ-Al2O3 adsorbent
Bahrin D.a, Subagjo S.a, Susanto H.a
a Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Copyright © 2016 BCREC GROUP. All rights reserved.Adsorbent CuO/γ-Al2O3for adsorption of SO2were prepared by impregnating Cu(NO3)2.3H2O solution. Five types of adsorbent were obtained 5Cu (intended Cu concentration of 5%, actual of 4.92%, 8Cu (7.68%), 15Cu(14.13%), 22Cu (20.80%) and 27Cu (25.80%). For activity test, model gas containing SO2with a concentration of about 0.757 mol.m-3 were passed through the bed of 1 gram adsorbent at a flow rate in the range of 1.4-1.8 mL.s-1. Adsorption of SO2were carried out at a constant temperature of 300, 350, 400 or 450 °C. Increasing sulfur loadings (gram of sulfur per gram of adsorbent) were observed with increasing adsorption temperatures, but not with increasing Cu content in the adsorbent. Among those types, adsorbent of 8Cu was considered as the best with respect to the sulfur loading (3.71 g of sulfur per 100 g of adsorbent). Adsorbent 5Cu had actually a better sulfur loading, but it was suspected being contributed also by adsorption of SO2on γ-Al2O3. The shrinking core model was used in the kinetic study of adsorption using 8Cu and with additional assumption of a spherical particle. Compared to film diffusion and pore diffusion controlling step models, the reaction rate limitation was the best to fit the experimental data. The reaction rate constant for this model at temperatures of 300, 350, 400 and 450 °C were 0.015, 0.027, 0.030 and 0.042 kg.m.mol-1.min-1, respectively. The activation energy was 21.37 kJ.mol-1 and the frequency factor was 1.45 min-1.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adsorption temperature,Constant temperature,Controlling steps,Cu concentrations,Film diffusion,Frequency factors,Shrinking core model,Spherical particle[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]CuO conversion,CuO/γ-Al2O3 adsorbent,Shrinking core model,SO2 adsorption[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.9767/bcrec.11.1.425.93-99[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]