[vc_empty_space][vc_empty_space]
Wall following control algorithm for a car-like wheeled-mobile robot with differential-wheels drive
Prayudhi L.H.a, Widyotriatmo A.b, Hong K.-S.a
a Logistics Information Technology, Pusan National University, Busan, 609-735, South Korea
b Instrumentation and Control Research Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 Institute of Control, Robotics and Systems – ICROS.A configuration wheeled mobile robot which is classified as car-like vehicle with a differential wheels drive is developed. The mobile robot is driven based upon differential wheels drive and rotating steer mechanism. The system configuration of mobile robot platform is designed including the necessary sensors and controller. The kinematic model of the mobile robot is derived and the control configuration is proposed. A wall following control algorithm for the robot is developed using the Lyapunov method. The state variables of the wall following model are the distance error from the position of mobile robot to a desired distance from the wall and the orientation error between the orientation of the mobile robot and the wall. The closed-loop system shows asymptotic stabilization of the origin of variables, which are distance and orientation of the mobile robot with respect to the wall. The control algorithm steers the mobile robot to move along the wall with a predetermined distance and zero orientation to the wall. The effectiveness of designed control algorithm is shown using simulation results.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Asymptotic stabilization,Autonomous systems,Car-like mobile robots,Control configuration,Mobile robot platforms,System configurations,Wall following,Wheeled mobile robot[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]autonomous system,car-like mobile robot,differential-wheels drive,kinematics,Lyapunov method,Mobile robot,wall following control[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICCAS.2015.7364726[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]