Enter your keyword

2-s2.0-84969226325

[vc_empty_space][vc_empty_space]

3D-FDTD method for analysis of rectangular waveguide loaded with anisotropic dielectric material

Randa M.a,b, Munir A.b

a Department of Research and Development, The Ministry of Defense, Indonesia
b Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Infomatics, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2014, Institute of Advanced Engineering and Science. All rights reserved.One of the most popular techniques to solve electromagnetic problems numerically is using finite-difference time-domain (FDTD) method. The method has been successfully applied to an extremely wide variety of electromagnetic problems. The essential reason resides in the fact that the FDTD method itself is extremely simple even for analyzing in a three-dimensional (3D) system. In this paper, the analysis of resonant frequency for a rectangular waveguide which is loaded with anisotropic dielectric material is numerically investigated based on 3D-FDTD method. The wave equations and modes that appear in the waveguide are analyzed theoretically in which the results are applied to validate the numerical result obtained from 3D-FDTD method. For comparison, an empty rectangular waveguide and a rectangular waveguide fully loaded with isotropic dielectric material are also analyzed both theoretically and numerically. From the result, it shows that a good agreement has been achieved between theoretical calculation and 3D-FDTD numerical results with their discrepancies of 0.26–2.32%.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]3D-FDTD method,Anisotropic dielectric material,Rectangular waveguide,Resonant frequency[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is partially supported by the Directorate General of Higher Education (DGHE), the Ministry of Education and Culture, the Republic of Indonesia, under the program scheme of decentralization research 2014.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.11591/eecsi.1.375[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]