[vc_empty_space][vc_empty_space]
Cylindrical coordinate system-based full wave FDTD computation for resonant frequency calculation of circular cavity resonator
Munir A.a, Ranum B.T.a
a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Infomatics, Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 IEEE.In this paper, a full wave finite difference time domain (FDTD) computation method based on cylindrical coordinate system is proposed for calculating the resonant frequency of circular cavity resonator. The use of FDTD method with cylindrical coordinate system instead of Cartesian coordinate system is considered due to the geometry shape of analyzed structure, i.e. circular cavity resonator. In the computation, a hollow circular cavity resonator made of perfect conductor with the radius of 50mm and length of 100mm is discretized based on cylindrical coordinate system and numerically computed to determine its resonant frequencies. To verify the proposed method, the theoretical approach for the cavity is carried out by calculating its resonant frequencies for correspondent resonance mode. In addition, a simulation for determining resonant frequencies of the cavity is also conducted using finite element method (FEM) commercialized software. It shows that the FDTD computation result demonstrates an acceptable accuracy compared to the theoretical approach with the discrepancy less than 5% although it is worse than the result of FEM commercialized software.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cartesian coordinate system,Computation methods,Cylindrical coordinate systems,FDTD computations,Finite -difference time domains (FDTD),Frequency calculations,Full waves,Theoretical approach[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Circular cavity resonator,cylindrical coordinate system,full wave FDTD method,resonant frequency[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICWT.2015.7449251[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]