[vc_empty_space][vc_empty_space]
Time analysis of surface electromyography signal for active prosthetics control
Darmakusuma R.a, Prihatmanto A.S.a, Indrayanto A.a, Mengko T.L.R.a
a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 Pushpa Publishing House, Allahabad, India.One of the crucial aspects towards an effective use of prosthetics is its intuitive control. In active prosthetics based on surface electromyography (sEMG), the intuitive control could be achieved through the early movement detection and high accuracy of sEMG signal interpretation. We describe the use of Maximum Voluntary Contraction (MVC) and threshold method to detect the arm movement. While analyzing the dynamics of sEMG signal, we found that a subject could increase the arm movement detection speed by moving his arm faster decreasing the threshold value. As a consequence, system could detect the arm movement prior to actual movement occurred. We also found that the use of multilevel threshold can provide an active prosthetic for having faster movement. Hence, the total delay time of active prosthetic becomes shorter by increasing the detection time speed and reduces the movement time to arrive at the desired position.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Active prosthetic,Delay time,Intuitive,Movement detection,MVC,Semg,Threshold[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.17654/EC016020381[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]