Enter your keyword

2-s2.0-84971669586

[vc_empty_space][vc_empty_space]

Two dimensional finite element method simulation to determine the brain capacitance based on ECVT measurement

Sirait S.H.a, Taruno W.P.b, Khotimah S.N.a, Haryanto F.a

a Physics Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Center of Medical Physics and Cancer Research, CTECH Laboratories, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.A simulation to determine capacitance of brain’s electrical activity based on two electrodes ECVT was conducted in this study. This study began with construction of 2D coronal head geometry with five different layers and ECVT sensor design, and then both of these designs were merged. After that, boundary conditions were applied on two electrodes in the ECVT sensor. The first electrode was defined as a Dirichlet boundary condition with 20 V in potential and another electrode was defined as a Dirichlet boundary condition with 0 V in potential. Simulated Hodgkin-Huxley -based action potentials were applied as electrical activity of the brain and sequentially were put on 3 different cross-sectional positions. As the governing equation, the Poisson equation was implemented in the geometry. Poisson equation was solved by finite element method. The simulation showed that the simulated capacitance values were affected by action potentials and cross-sectional action potential positions.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Action potentials,Capacitance values,Different layers,Dirichlet boundary condition,Electrical activities,Governing equations,Two dimensional finite element method,Two electrodes[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/694/1/012069[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]