Enter your keyword

2-s2.0-84977090786

[vc_empty_space][vc_empty_space]

Growth mechanism of Co:TiO2 thin film deposited by metal organic chemical vapor deposition technique

Saripudin A.a, Arifin P.b

a Study Program of Electrical Engineering, Dept. of Electrical Engineering Education, Faculty of Technology and Vocational, Universitas Pendidikan Indonesia, Bandung, West Java, 40154, Indonesia
b Physics of Electronics Material Lab., Study Program of Physics, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.In this research, we investigated the growth mechanism of cobalt-doped titanium dioxide (Co:TiO2) films. Thi Co:TiO2 thin films were grown on the n-type silicon substrate. The films were grown by metal organic chemical vapor deposition method. The growth temperature was varied of 325°C – 450°C. The films were characterized by SEM. Using Arheniu’s equation, it is known that the activation energy value of film growth is positive in the range of temperature of 325°C – 400°C and negative in the range of temperature of 400°C – 450°C. These results show that the decomposition rate in the range of temperature of 325°C – 400°C is due to diffusion phase of precursor gas. On the other hand, the decomposition rate decreased in the range of temperature of 400°C – 450°C because the precursor gas decreased, and the surface chemical reaction was high.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cobalt-doped titanium dioxide,Decomposition rate,Growth mechanisms,Metal organic,N type silicon,Surface chemical reactions[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1757-899X/128/1/012046[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]