[vc_empty_space][vc_empty_space]
Opponent zigzag movement model capture and prediction in robotic soccer
Andriana D.a,b, MacHbub C.b, Prihatmanto A.S.b
a Research Centre for Informatics, Indonesian Institute of Sciences, Bandung, Indonesia
b School of Electrical Engineering and Informatics, Institute of Technology Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 IEEE.Robotic soccer research as a standard problem to foster Artificial Intelligent research in robotics and related fields still needs improvement in game play modeling. Action anticipation decision could be based on opponent game play model. Artificial Neural Network has been used to capture game play model, but still has problems of slow learning convergence and inaccuracy. Artificial Neural Network algorithm need to be a small, fast, and robust application for small devices of robot soccer. In this paper, experiments of model capturing simulated zigzag soccer movement has been done using Radial Basis Function Neural Network, Inverse Function Neural Network, pseudo-inverse Singular Value Decomposition, existing and modified Simurosot robot soccer prediction algorithm. Model capture results show, despite higher error in zigzag movement model capture, the Inverse Function Neural Network and the modified Simurosot prediction algorithm yield lower error in movement prediction.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Artificial intelligent,Artificial neural network algorithm,Learning convergence,Model and simulation,Prediction algorithms,Radial basis function neural networks,Robotic soccer,Simurosot[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]modeling and simulation,neural network,prediction,robotic soccer,Simurosot[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/IDM.2015.7516332[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]