[vc_empty_space][vc_empty_space]
Design and realization of planar reflector based on artificial magnetic conductor at S-band frequency
Mandaris D.a,b, Buesink F.a, Leferink F.a,c, Munir A.d
a University of Twente, Enschede, Netherlands
b Research Center for Quality System and Testing Technology, Indonesian Institute of Sciences, Serpong, Indonesia
c Thales, Hengelo, Netherlands
d Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, ITB, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 IEEE.A planar reflector which is built from simple periodically 15×15 square patches on a grounded dielectric substrate without vias is described. The design of the planar reflector is based on the structure of artificial magnetic conductor (AMC) and intended to work at S-band frequency with certain bandwidth. At the first step, a unit cell of AMC is designed and characterized looking at the variation of dimension, thickness, and properties of material. The investigation is continued by composing a planar reflector and analyzing its performance in an electromagnetics (EM) simulation tool. The last step is prototyping and measuring the performance by experimental characterization, such as radiation pattern, beamwidth and gain. It is shown that the measurement results are in good agreement with the simulation ones. The results show that main lobes of radiation pattern are directed to the angle of θ = 0° and φ = 0° with a beamwitdh of 24° and 20° for the E-plane and H-plane, respectively. The measured gain is approximately 8dB which is less than the simulated one of around 10dB.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Artificial magnetic conductors,Dielectric substrates,Electromagnetics,Experimental characterization,High-impedance surfaces,Planar reflectors,S-Band frequencies,Square patches[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Artificial Magnetic Conductor (AMC),High Impedance Surface (HIS),planar reflector,S-band frequency[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/APEMC.2016.7522720[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]