[vc_empty_space][vc_empty_space]
The (strong) rainbow connection number of stellar graphs
Shulhany M.A.a, Salman A.N.M.a
a Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 AIP Publishing LLC.Let G = (V,E) be a simple, connected, and finite graph. A function c from E to {1, 2, …, k} is said rainbow k-coloring of G, if for any pair of vertices u and v in V, there exists au-vpath whose edges have different colors. The rainbow connection number of G, denoted by rc(G), is the smallest positive integer k such that Ghas a rainbow k-coloring. Furthermore, such the function c is said strong rainbow k-coloring, if for any pair of vertices u and v in V, there exists a rainbow u-v path with its length is equal to distance betweenu and v. The smallest positive integer k such that G has a strong rainbow k-coloring is defined as the strong rainbow connection number, denoted by src(G).In this paper, we introduce a new class of graphs, namely stellar graphs. A stellar graph on 2mn+1 vertices, denoted by Stm,n, is the corona product of a trivial graph and mcopies ladder graph on 2n vertices (K1..Ln). We determine the (strong) rainbow connection number of stellar graphs.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text](strong) rainbow connection number,stellar graphs[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.4941170[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]