Enter your keyword

2-s2.0-84984538977

[vc_empty_space][vc_empty_space]

Locating-chromatic number for a graph of two components

Welyyanti D.a, Simanjuntak R.a, Uttunggadewa S.a, Baskoro E.T.a

a Combinatorial Mathematics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 AIP Publishing LLC.The study of locating-chromatic number of a graph initiated by Chartrand et al. [5] is only limited for connected graphs. In 2014, Welyyanti et al. extended this notion so that the locating-chromatic number can also be applied to disconnected graphs. Let c be a k-coloring of a disconnected graph H(V, E) and Φ = {C1,C2, …, Ck} be the partition of V (H) induced by c, where Ci is the set of all vertices receiving color i. The color code cΦ(v) of a vertex v ∈ H is the ordered k-tuple (d(v,C1), d(v,C2), …, d(v,Ck)), where d(v,Ci) = min{d(v, x)|x ∈ Ci} and d(v,Ci) < ∞ for all i ∈ [1, k]. If all vertices of H have distinct color codes, then c is called a locating-coloring of H. The locating-chromatic number of H, denoted by χ'L(H), is the smallest k such that H admits a locating-coloring with k colors, otherwise we say that χ'L(H)=∞. In this paper, we determine locating-chromatic number of a graph with two components where each component has the locating-chromatic number 3.[/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="Author keywords" size="size-sm" text_align="text-left"][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="Indexed keywords" size="size-sm" text_align="text-left"][vc_column_text]color,coloring,disconnected,graph,locating-chromatic number[/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="Funding details" size="size-sm" text_align="text-left"][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="DOI" size="size-sm" text_align="text-left"][vc_column_text]https://doi.org/10.1063/1.4940825[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]