Enter your keyword

2-s2.0-84984585676

[vc_empty_space][vc_empty_space]

Some trees with partition dimension three

Fredlina K.Q.a, Baskoro E.T.a

a Institut Teknologi Bandung (ITB), Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 AIP Publishing LLC.The concept of partition dimension of a graph was introduced by Chartrand, E. Salehi and P. Zhang (1998) [2]. Let G(V, E) be a connected graph. For S ⊆ V (G) and v ∈ V (G), define the distance d(v, S) from v to S is min{d(v, x)|x ∈ S}. Let Π be an ordered partition of V (G) and Π = {S1, S2, ···, Sk }. The representation r(v|Π) of vertex v with respect to Π is (d(v, S1), d(v, S2), ···, d(v, Sk)). If the representations of all vertices are distinct, then the partition Π is called a resolving partition of G. The partition dimension of G is the minimum k such that G has a resolving partition with k partition classes. In this paper, we characterize some classes of trees with partition dimension three, namely olive trees, weeds, and centipedes.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]centipede,olive,partition dimension,tree,weed[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.4940807[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]