[vc_empty_space][vc_empty_space]
Isolation of bioactive compound of Michelia champaca L. bark and its activity test using mechanism-based yeast bioassay
Zuhrotun A.a,b, Suganda A.G.b, Wirasutisna K.R.b, Wibowo M.S.b
a Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, 45363, Indonesia
b Department of Pharmaceutical Biology, School of Pharmacy, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016, Innovare Academics Sciences Pvt. Ltd. All rights reserved.Objectives: This study aimed to isolate the active compound of Michelia champaca L. bark and test its activity using mechanism-based yeast bioassay. Methods: The bark was extracted by methanol; fractionation was done by liquid-liquid extraction (LLE) using n-hexane, ethyl acetate, and water. The activity of LLE fractions was tested by mechanism-based yeast bioassay. The most active fraction was then separated by vacuum liquid chromatography, further separated by classical column chromatography and purified by recrystallization. The isolate was characterized by ultraviolet-visible, infrared spectrophotometric method, nuclear magnetic resonance spectroscopy, and mass spectrometric method. Results: The isolation process resulted in an isolate named MCET51. Characterization data showed that MCET51 was proved as liriodenine (C17H9NO3) with molecular weight 275 (m/z), an aporphine alkaloid. The activity assay showed that liriodenine was active against Saccharomyces cerevisiae strain 1140, 1353, and 1138 with IC12 values were 22.15±1.71, 24.76±0.56, and 7.02±1.85 µg/ml, respectively. Conclusions: It can be concluded that M. champaca L. bark contained liriodenine which was active both as topoisomerase I inhibitor and topoisomerase II inhibitor.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Liriodenine,Mechanism-based yeast bioassay,Michelia champaca L.,Topoisomerase inhibitor[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.22159/ajpcr.2016.v9i5.12856[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]