[vc_empty_space][vc_empty_space]
Modeling and Calculation of Optical Amplification in One Dimensional Case of Laser Medium Using Finite Difference Time Domain Method
Maryana O.F.T.a, Hidayat R.a
a Physics of Magnetism and Photonics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, West-Java, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Finite Difference Time Domain (FDTD) method has been much employed for studying light propagation in various structures, from simple one-dimensional structures up to three-dimensional complex structures. One of challenging problems is to implement this method for the case of light propagation in amplifying medium or structures, such as optical amplifier and lasers. The implementation is hindered by the fact that the dielectric constant becomes a complex number when optical gain parameter is involved in the calculation. In general, complex dielectric constant is related to complex susceptibility, in which the imaginary part is related to optical gain. Here, we then modify the formulation for updating electric field in the calculation algorithm. Using this approach, we then finally can calculate light amplification in laser active medium of Nd3+ ion doped glass. The calculation result shows an agreement with the result from the calculation using differential equation for intensity. Although this method is more time consuming, the method seem promising for optical complex micro- and nano-structures, such quantum dot lasers, micro-ring lasers, etc.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Calculation algorithms,Calculation results,Complex dielectric constant,Complex susceptibility,Light amplification,Modeling and calculations,One-dimensional structure,Optical amplifications[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/739/1/012100[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]