Enter your keyword

2-s2.0-84995579523

[vc_empty_space][vc_empty_space]

Influence of impregnation and coprecipitation method in preparation of Cu/ZnO catalyst for methanol synthesis

Prasetyaningsih Y.a, Hendriyanab, Susanto H.c

a Department of Chemical Engineering, Politeknik TEDC Bandung Jalan Politeknik, Cimahi, Indonesia
b Department of Chemical Engineering, Faculty of Engineering, UNJANI, Cimahi, Indonesia
c Department of Chemical Engineering, Faculty of Industrial Technology Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]©2016 Published by ITB Journal Publisher.Cu/ZnO catalyst was succesfully prepared using a coprecipitation method. The mixing procedure of the Cu(NO3)2, Zn(NO3)2 and Na2CO3 solutions had an important influence on the characteristics of the catalyst. The best catalyst obtained was the one prepared with slow mixing of the salt solutions and a CuO/ZnO molar ratio of 50:50. This raw catalyst had a maximum surface area of about 61.6 m2/g. Increasing the CuO/ZnO molar ratio caused an agglomeration of precipitated particles, reducing the surface area. A much better catalyst was obtained using an impregnation method, in which γ-Al2O3 was used as support. The impregnated catalyst had a surface area of about 151 m2/g. Activity tests were carried out in a fixed-bed reactor containing 1 g of catalyst and a flow of syngas at a rate of 60 mL/min. The reaction temperature was 170°C and the pressure was 20 barg. The best coprecipitated catalyst gave a CO conversion of about 10%, while the impregnated catalyst gave a CO conversion of up to 69%.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Coprecipitation method,Crystallinities,Cu/ZnO catalyst,DME synthesis,Impregnation methods,Pore property,XRD analysis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Catalyst activity,Catalyst crystallinity,Co-precipitation method,Cu/ZnO catalyst,Direct dme synthesis,Impregnation method,Pore properties,XRD analysis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.5614/j.eng.technol.sci.2016.48.4.6[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]