[vc_empty_space][vc_empty_space]
Identification of Surface Manifestation at Geothermal Field Using SAR Dual Orbit Data
Akbari D.a, Saepuloh A.a
a Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology (ITB), Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The Wayang -Windu Geothermal Field located in West Java, Indonesia is a geothermal field under tropical zone which is identified by high precipitation, dense vegetation, and extensive weathering/alteration. The clouds due to high precipitation and vegetation conditions on the tropical zone inhibit the identification of surface manifestation using optical remote sensing techniques. In this paper, we reduced these inhibiting factors using microwave remote sensing techniques termed as Synthetic Aperture Radar (SAR). The SAR dual orbits were used to observe the targets on the surface by minimizing the effects from the clouds and dense vegetation cover. This study is aimed to identify surface manifestation based on Geo morphologic and Structural Features (GSF) of the SAR in Ascending and Descending orbits. The Linear Features Density of SAR (lifedSAR) method was applied to quantify the linear features of the ground surface and served as basis of surface manifestation identification. Based on the lifedSAR and field observations, the surface manifestations could be detected succesfully at Wayang and Cibolang craters with density about 45%. The soil measurements were used validate the result and to interpret the correlation between LFD and surface manifestations.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Field observations,Inhibiting factors,Microwave remote sensing,Optical remote sensing,Soil measurement,Structural feature,Surface manifestations,Vegetation condition[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1755-1315/42/1/012001[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]