Enter your keyword

2-s2.0-85006184482

[vc_empty_space][vc_empty_space]

Identification and isolation of closed pore in porous rock using digital rock physics approach

Latief F.D.E.a

a Physics of Earth and Complex Systems, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 AIP Publishing LLC.The presence of closed pore in porous rock provide various effect with regard to its structural, elastic and flow properties. Physical based approach to measure porosity such as mercury porosimetry injection is unable to locate closed pore inside porous rock even though it is still possible to quantify the closed porosity. Digital data of porous rock in the form of three dimensional image can now be obtained by means of several methods such as micro-CT scan. Using the digital data, closed pore can be identified and isolated using digital rock physics approach. We first construct a synthetic three dimensional porous sample which consist of two simple side-to-side connected pore (cylinder and box shaped) and two spherical isolated pore which has closed porosity of 1.41 %. The digital image analysis which implemented in software CTAn (Bruker Micro-CT) still produce error of 0.04% which is very low. However, analysis using Lattice Boltzmann Method based simulation of fluid flow provide exact match to the closed porosity of the synthetic sample. Nevertheless, there are two disadvantages of this method, i.e., the simulation could take hours compared to the digital image analysis which only took several minutes and the limitation of numerical definition of zero velocity. Thus we apply both methods in order to overcome the drawbacks of each methods to analyze the digital sample of Fontainebleau sandstone. Using CTAn, we obtained the closed porosity of 0.02891845 % and using the LBM based fluid flow simulation of 0.028948346 %. The closed pore can then be isolated to further calculate the surface area. The result also confirmed that pore space of Fontainebleau sandstone is well connected.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.4930692[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]