[vc_empty_space][vc_empty_space]
Enhancement of SO2 gas sensing performance using ZnO nanorod thin films: the role of deposition time
Yuliarto B.a, Ramadhani M.F.a, Nugrahaa, Septiani N.L.W.a, Hamam K.A.b
a Advanced Functional Materials Laboratory, Engineering Physics Department, Institut Teknologi Bandung, Bandung, Indonesia
b Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016, Springer Science+Business Media New York.In this study, a sensor with a controllable thin film of zinc oxide (ZnO) nanostructures with different deposition times is successfully synthesized over alumina substrates by chemical bath deposition methods. The seed of ZnO is grown using the dip-coating method, and ZnO thin film is grown by chemical bath deposition (CBD) using the precursor of Zn(NO3)2·4H2O. Chemical bath deposition was done three times to investigate the role of deposition time toward gas sensing properties. Structure, morphology, and composition of the ZnO thin films are characterized using X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy, respectively. From the morphology characterization, the ZnO nanostructure from two-times CBD and three-times CBD process shows different sizes and densities of nanorods compared to the ZnO thin film from one-time CBD process. Increasing thickness of thin film is also observed in two-times CBD of ZnO. The gas sensor characterization test results show that the ZnO thin films from two-times CBD can improve the sensing response to be 93% for SO2 gas at 70 ppm of concentration at working temperature of 300 °C, which is an increase of 15% compared to ZnO thin films from one-time CBD. At different operation temperatures, the response of two-times CBD ZnO nanorod increases 20–40% over one-time CBD ZnO nanorod. The three-times CBD ZnO nanorod showed non-order and high-density nanostructure yielding low resistance value and cause low sensor response.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Chemical bath deposition methods,Chemical-bath deposition,Dipcoating methods,Gas sensing properties,Morphology characterizations,Operation temperature,Sensor characterizations,Working temperatures[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/s10853-016-0699-5[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]