[vc_empty_space][vc_empty_space]
Oxygen vacancy-rich mesoporous silica KCC-1 for CO2 methanation
Hamid M.Y.S.a, Firmansyah M.L.a, Triwahyono S.a, Jalil A.A.a, Mukti R.R.b, Febriyanti E.b, Suendo V.b, Setiabudi H.D.c, Mohamed M.a, Nabgan W.a
a Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru, 81310, Malaysia
b Physical and Inorganic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
c Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, 26300, Malaysia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 Elsevier B.V.Mesoporous silica KCC-1 was successfully synthesized by microemulsion system coupled with microwave-assisted hydrothermal method. Mesoporous silica KCC-1 exhibited spherical morphology surrounded with dendritic fiber with the particle size of 200–400 nm and BET surface area of 773 m2/g. Mesoporous silica KCC-1 has significantly higher number of basicity and oxygen vacancy than those of MCM-41 and SiO2which directly correlated with the catalytic performance of the catalyst. The activity of mesoporous silica KCC-1 in CO2methanation is five-fold higher than MCM-41 with the yield of CH4reached 38.9% at 723 K.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]BET surface area,Catalytic performance,Dendritic fibers,Mesoporous Silica,Microemulsion systems,Microwave-assisted hydrothermal,Spherical morphologies[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Basicity,CO2methanation,Mesoporous silica KCC-1,Microemulsion system,Oxygen vacancy[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]A part of this work was supported by the Nippon Sheet Glass Foundation for Materials Science and Engineering, Japan (No. 4B181) and Ministry of Higher Education, Malaysia through Fundamental Research Grant Scheme (No. 4F781) and MyPhD Scholarship for M.Y.S. Hamid.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.apcata.2016.12.023[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]