Enter your keyword

2-s2.0-85008873467

[vc_empty_space][vc_empty_space]

A simulated annealing heuristic for the hybrid vehicle routing problem

Yu V.F.a, Redi A.A.N.P.a, Hidayat Y.A.b, Wibowo O.J.a,b

a Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
b Department of Industrial Engineering, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 Elsevier B.V.This study proposes the Hybrid Vehicle Routing Problem (HVRP), which is an extension of the Green Vehicle Routing Problem (G-VRP). We focus on vehicles that use a hybrid power source, known as the Plug-in Hybrid Electric Vehicle (PHEV) and generate a mathematical model to minimize the total cost of travel by driving PHEV. Moreover, the model considers the utilization of electric and fuel power depending on the availability of either electric charging or fuel stations. We develop simulated annealing with a restart strategy (SA_RS) to solve this problem, and it consists of two versions. The first version determines the acceptance probability of a worse solution using the Boltzmann function, denoted as SA_RSBF. The second version employs the Cauchy function to determine the acceptance probability of a worse solution, denoted as SA_RSCF. The proposed SA algorithm is first verified with benchmark data of the capacitated vehicle routing problem (CVRP), with the result showing that it performs well and confirms its efficiency in solving CVRP. Further analysis show that SA_RSCF is preferable compared to SA_RSBF and that SA with a restart strategy performs better than without a restart strategy. We next utilize the SA_RSCF method to solve HVRP. The numerical experiment presents that vehicle type and the number of electric charging stations have an impact on the total travel cost.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Boltzmann function,Capacitated vehicle routing problem,Electric charging,Hybrid power sources,Numerical experiments,Plug in hybrid electric vehicles,Restart strategy,Vehicle Routing Problems[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cauchy function,Hybrid electric vehicle,Hybrid vehicle routing problem,Restart strategy,Simulated annealing[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.asoc.2016.12.027[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]