Enter your keyword

2-s2.0-85010877125

[vc_empty_space][vc_empty_space]

Effect of pulse frequency on the deposition of Cu-Fe alloy via pulsed current electrodeposition method

Setiawan A.R.a, Ramelan A.a, Nuruddin A.b, Hasanah I.U.a

a Research Groups of Materials Science and Engineering, Faculty of Mechanical and Aerospace Engineering, InstituteTeknologi Bandung, Indonesia
b Department of Physic Engineering, Faculty of Industrial Technology, Institute Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 Trans Tech Publications.In an attempt to reduce the oxidation and Cr evaporation rates of solid oxide fuel cells (SOFCs) interconnect, Cu-Fe coating was developed on the AISI 430 ferritic stainless steel substrate by a pulsed current electrodeposition method. Effects of pulse frequency on properties and performance of the fabricated coating were investigated. Results show that Cu-Fe alloy was successfully fabricated using pulse deposition methods. The variation of pulsed frequency during pulse current deposition strongly influence the coating morphology and its composition. The increase of pulse frequency tend to increase the Cu-Fe grain size. Moreover, the amount of Cu particles decreases with the increase of pulse frequency.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]AISI 430 ferritic stainless steels,Coating morphology,Interconnect,Pulse deposition,Pulse frequencies,Pulsed frequency,Pulsed-current electrodeposition,Solid oxide fuel cells (SOFCs)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cu-Fe,Interconnect,Pulsed frequency,SOFC[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4028/www.scientific.net/KEM.728.111[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]