Enter your keyword

2-s2.0-85011032586

[vc_empty_space][vc_empty_space]

Bandwidth allocation-aware scheduling algorithm for video-on-demand application over digital learning network

Triningsih E.a, Bandung Y.a

a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 IEEE.Digital learning in Indonesian rural area faces some problems in delivering Video-on-Demand (VoD) as learning materials because of heterogeneous and limited network. Recently, data-driven overlay network (DONet) approaches have attracted a lot of attention to solve VoD delivery problems in peer-to-peer based network. This paper presents an enhanced algorithm in overlay-network based digital learning built upon on previous research called CoolStreaming. The new algorithm takes into account bandwidth allocation of each node in scheduling content delivery process. The modified algorithm is then validated by comparing it with the previous algorithm. Validation of the proposed algorithm was based on simulation using OverSim and OMNET++ network simulator. We conducted three different scenarios to compare the proposed algorithm with the previous algorithm. The results show that the proposed algorithm has given better Quality of Service (QoS) performance than previous algorithm in all scenarios. The enhanced algorithm has indicated good quality in the investigated QoS parameters, namely delay and throughput.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Data-driven overlay network,Digital-learning,DONet,Modified algorithms,OMNet,Oversim,Video on demands (VoD),Video-on-demand applications[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]digital learning,DONet,OMNet++,OverSim,QoS,scheduling algorithm,Video-on-Demand[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICTSS.2016.7792857[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]