Enter your keyword

2-s2.0-85014127704

[vc_empty_space][vc_empty_space]

El niño southern oscillation signature in atmospheric: Water isotopes over maritime continent during wet season

Suwarman R.a, Ichiyanagi K.b,c, Tanoue M.d, Yoshimura K.d, Mori S.c, Yamanaka M.D.c, Syamsudin F.e, Belgaman H.A.b,e

a Atmospheric Sciences Research Group, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Indonesia
b Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
c Department of Coupled Ocean-Atmosphere-Land Processes Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
d School of Engineering, The University of Tokyo, Tokyo, Japan
e Agency for Marine-Earth Science and Technology, Yokosuka, Japan

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017, Meteorological Society of Japan.This study examined the relationship between El Niño-Southern Oscillation (ENSO) and atmospheric water isotopes during the wet season over the Maritime Continent. The model data used were obtained by incorporating stable isotopes into atmospheric general circulation and analytical moisture transport models. These models were used to analyze the climatological variables and rainout processes from various water sources that control isotopic variation. The correlation between the simulated stable isotope ratios and ENSO varied between -0.31 and 0.75 with stronger correlation over most of the Maritime Continent (|r|> 0.36, corresponding to the 95 % significance level) except Java. In general, during La Niña years, the isotopic ratio in water vapor and precipitation is smaller than that during El Niño years by approximately 2%. It was suggested that anomalous water vapor flux, precipitable water, and precipitation, but not evaporation, are responsible for isotopic variation. Furthermore, it was revealed that water vapor flux is convergent (divergent) during La Niña (El Niño) years, which suggests that the strengthened (weakened) Walker Circulation increases (reduces) precipitation, resulting in lighter (heavier) atmospheric water isotopes. The relationship between isotopes and precipitation, or the so-called “amount effect”, is evident over most of the Maritime Continent. Analysis of moisture transport suggested that rainout processes control isotopic variation. An increase in the quantity of water source, expressed in precipitable water, transported from the north and south Maritime Continent during El Niño years, does not result in isotopic depletion attributable to the lack of condensation processes. Moreover, a decrease in the quantity of both water source during La Niña years does not result in isotopic enrichment attributable to intensive rainout. An asymmetric ENSO feature was found in this study, evidenced by the similar contributions of water source from the northern Maritime Continent and the Pacific Ocean during both ENSO phases.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]El niño southern oscillation,Moisture transport analysis,Stable isotope[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]We are grateful for the many valuable comments by Dr. Hirohiko Masunaga (editor) and the two anonymous reviewers. This research was supported partly by project research of Department of Coupled Ocean-Atsmosphere-Land Processes of JAMSTEC, Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Numbers: 24510256 and 16H05619), and the Priority Organization for Innovation and Excellence of Kumamoto University. The data were provided by Scripps Experimental Climate Prediction Center?s (ECPC), JRA-25 longterm reanalysis by Japan Meteorological Agency, and Central Research Institute of Electric Power Industry.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.2151/jmsj.2017-003[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]