[vc_empty_space][vc_empty_space]
Shape based recognition using freeman chain code and modified Needleman-Wunsch
Rachmawati E.a, Khodra M.L.a, Supriana I.a
a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 IEEE.Contours are one of the most commonly used shape descriptors in object recognition problem. In this paper, we proposed object recognition system based on shape. The shape is obtained by extracting the contour of the object in the image using common techniques in image processing domain. Further, the shape is represented by using chain coding technique and the chain coded representation is modified into the set of segments, with each segment has a particular weight in accordance with its length in its polygonal approximation of the object shape. For the purpose of similarity calculation, we modified a common algorithm used in Bioinformatics field, namely Needleman-Wunsch algorithm, in the term of scoring function. We created a new definition and implementation of the substitution matrix (for the purpose of scoring function), according to the characteristics of set of line segment. From the experiment we have conducted, we successfully shown that the weight of each segment of the object shape has positive impact in the similarity calculation, shown by the precision and recall value.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Freeman chain code,Needleman-Wunsch,Needleman-Wunsch algorithm,Object recognition problem,Object recognition systems,Polygonal approximations,Scoring functions,Shape based[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Freeman Chain Code,Needleman-Wunsch,scoring function,shape-based recognition[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICITEED.2016.7863307[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]