Enter your keyword

2-s2.0-85015906716

[vc_empty_space][vc_empty_space]

Port performance evaluation tool based on microsimulation model

Tsavalista Burhani J.a, Zukhruf F.a, Bona Frazila R.a

a Institut Teknologi Bandung, Civil Engineering Department, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© The Authors, published by EDP Sciences, 2017.As port performance is becoming correlative to national competitiveness, the issue of port performance evaluation has significantly raised. Port performances can simply be indicated by port service levels to the ship (e.g., throughput, waiting for berthing etc.), as well as the utilization level of equipment and facilities within a certain period. The performances evaluation then can be used as a tool to develop related policies for improving the port’s performance to be more effective and efficient. However, the evaluation is frequently conducted based on deterministic approach, which hardly captures the nature variations of port parameters. Therefore, this paper presents a stochastic microsimulation model for investigating the impacts of port parameter variations to the port performances. The variations are derived from actual data in order to provide more realistic results. The model is further developed using MATLAB and Simulink based on the queuing theory.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Deterministic approach,MATLAB and SIMULINK,Microsimulation modeling,National competitiveness,Performance evaluation tools,Performances evaluation,Queuing theory,Service levels[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1051/matecconf/201710105011[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]