[vc_empty_space][vc_empty_space]
Physical layer design with analog front end for bidirectional DCO-OFDM visible light communications
Adiono T.a, Pradana A.a, Putra R.V.W.a, Cahyadi W.A.b, Chung Y.H.b
a Bandung Institute of Technology (ITB), School of Electrical Engineering and Informatics, Department of Electrical Engineering, Bandung, 40132, Indonesia
b Dept. of Information and Comm. Eng., Pukyong National University, South Korea
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 Elsevier GmbHVisible light communication (VLC) is a promising wireless communication technology that utilizes existing lighting system infrastructure. This paper presents the bidirectional VLC physical layer design that supports both pulse width modulation (PWM) and direct current-biased optical orthogonal frequency division multiplexing (DCO-OFDM) for downlink, and an infrared pulse position modulation (PPM) for uplink. The physical layer consists of an analog front end (AFE) and digital signal processing (DSP) circuits on both the transmitter and the receiver. The AFE circuit on the receiver is specifically designed to compensate for impairments in optical channels, such as ambient light and uneven distribution of light intensity. The evaluation results show that the designed AFE circuit minimizes the interference in the receiver without increasing the TX power. In addition, the PWM is found to be more robust in the optical channel than the DCO-OFDM. In respect of data transmission rate, however, it is observed that the DCO-OFDM is superior to the PWM; namely, the DCO-OFDM modulation using quadrature phase shift keying (QPSK) attains a data rate of 26.8 kbps, while the 2-PWM modulation achieves a data rate of 6.2 kbps.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Analog front end,Data transmission rates,Digital signal processing (DSP),Optical orthogonal frequency division multiplexing,Physical layers,Quadrature phaseshift keying (QPSK),Visible light communications (VLC),Wireless communication technology[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Analog front-end design,DCO-OFDM,Physical layer,Visible light communication[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported under the framework of international cooperation program managed by National Research Foundation of Korea (2014K2A1A2048581).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.ijleo.2017.03.046[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]