Enter your keyword

2-s2.0-85017024656

[vc_empty_space][vc_empty_space]

Parametric Study of Integral Buckle Arrestors Design of Submarine Pipeline System in Masela Block

Kamil D.M.a, Kariem M.A.a, Puja I.W.a

a Faculty of Mechanical and Aerospace Engineering, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 The Authors.A pipe collapse or local buckling is one of catastrophic failures that might be occurred in a submarine pipeline system due to a high external hydrostatic pressure. A preliminary survey of pipeline on the selected route shows that the pipeline will pass through a 5,309 ft of depth. Buckle arrestors are necessary to be installed along a critical location of pipeline to prevent buckle propagation and catastrophic failure. The purposes of this study was to examine the effect of geometry variation, such as (i) pipe thickness, (ii) ratio of buckle arrestor thickness to pipe thickness, (iii) buckle arrestor length, and (iv) pipe diameter, of the integral buckle arrestor system to a buckling load factor. The study was conducted by numerical simulations using ANSYS™. Nominal Pipe Sizes of 28″, 30″ and 32″ with API 5L grade X60 materials were used in the simulation. The simulation was validated using experimental data of previous study and DNV-OS-F101. Based on this study, the buckle load factor was significantly influenced by the pipe thickness and the pipe diameter. The other two factors generate a slight change on the buckle load factor. For selected NPS of 28″ with 1.2″ thickness of pipeline, we hypothesize that the integral buckle arrestor with 30″ length and 3.6″ thickness can be used to prevent buckling propagation.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Buckle propagation,Buckling load factor,Catastrophic failures,Critical location,External hydrostatic pressures,Geometry variations,Parametric study,Pipeline buckling[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Buckle Arrestors,Numerical Simulation,Pipeline Buckling,Submarine Pipeline[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.proeng.2016.12.226[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]