Enter your keyword

2-s2.0-85018295162

[vc_empty_space][vc_empty_space]

A low cost design of Low Field NMR apparatus suitable for research and educational purposes

Prastio R.P.a, Danudirdjo D.a, Suksmono A.B.a

a School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 IEEE.This paper is written to report the development of Low Field NMR system using inexpensive material and to simulate NMR signal acquisition. One of the prospects of conducting this research is the possibility of building low field MRI for neural activity imaging. Several parts needed for building the system are considerably low cost and affordable. Homogeneous magnetic field is generated by Helmholtz coil whose frame is built from non ferrous material (PVC) to minimize distortion to the homogeneity. This coil is able to provide magnetic field up to 3.35 mT at 7.4 A. In order to increase the amplitude of NMR signal, the sample is induced by magnetic field of 22 mT using prepolarization coil. Simulation of NMR signal acquisition is done by transmitting 100 computer-generated NMR signals using a coil. The transmitted signal is then acquired by receiver coil to be amplified and filtered. The test shows that the receiver system is able to detect 10 microvolt signal. Also, this paper shows that averaging all of acquired signals will increase the SNR of the acquired signal. By using affordable materials and the simplicity of the design, this apparatus is suitable for research and educational purposes.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Computer generated,Homogeneous magnetic field,Low-cost design,Low-field NMR,Neural activity,Nonferrous materials,Receiver system,Transmitted signal[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Low Field NMR,Magnetic field,Magnetic moment,Magnetic Resonance Imaging[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ISESD.2016.7886742[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]