[vc_empty_space][vc_empty_space]
Fragmentation model of coal devolatilisation in fluidised bed combustion
a Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017, © 2017 Informa UK Limited, trading as Taylor & Francis Group.Devolatilisation is the release of volatile compounds from coal matrix by thermal decomposition. During coal devolatilisation, fragmentation could occur due to pressure build-up of accumulated volatiles. A fragmentation model is necessary to ensure the safe operation of coal combustion and optimum process condition. In this study, the refinement of fragmentation model of coal devolatilisation was done. In order to obtain a comprehensive model, a fluidised bed combustion experiment was conducted using two Indonesian coals (Musi Banyuasin and Berau) and the results were then compared with the model simulation. Using a coal diameter of 0.8–17 mm at a combustion temperature of 850°C, it shows that the fragmentation probability and number of fragments could be affected by the coal particle diameter, convective pore diameter, and porosity. Predictions made by the developed model were close to the experimental fragmentation data, with an error range of less than 5.1%.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Coal fragmentation,Combustion temperatures,Comprehensive model,Devolatilisation,Fluidised bed combustion,Fragmentation models,Optimum process conditions,Volatile compounds[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Coal devolatilisation,coal fragmentation,fluidised bed combustion,fragmentation probability,mathematical model[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1080/01430750.2017.1318788[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]