[vc_empty_space][vc_empty_space]
Particle Swarm Optimization (PSO) for Magnetotelluric (MT) 1D Inversion Modeling
Grandis H.a, Maulana Y.b
a Applied and Exploration Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Renewable Energy and Energy Conservation, Ministry of Energy and Mineral Resources, Jakarta Pusat, 10320, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Particle Swarm Optimization (PSO) is one of nature-inspired optimization algorithms that adopts swarm (insects, school of fish, flock of birds etc.) behaviour in search for food or common target in a collaborative manner. The particles (or agents) in the swarm learn from their neighbours as well as themselves regarding the promising area in the search space. The information is then used to update their position in order to reach the target. The search algorithm of a particle is dictated by the best position of that particle during the process (individual learning term) and the best particle in its surroundings (social learning term) at a particular iteration. In terms of optimization, the particles are models defined by their parameters, while the promising area in the model space is characterized by a low misfit associated with optimum models. Being a global search approach, PSO is suitable for nonlinear inverse problem resolution. The algorithm was applied to a simple minimization problem for illustration purpose. The application of PSO in geophysical inverse problem is demonstrated by inversion of synthetic magnetotelluric (MT) data associated with simple 1D models with satisfactory results in terms of model recovery as well as data misfit.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Geophysical inverse problems,Global search approach,Individual learning,Minimization problems,Non-linear inverse problem,Optimization algorithms,Search Algorithms,Social learning[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1755-1315/62/1/012033[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]