Enter your keyword

2-s2.0-85020195679

[vc_empty_space][vc_empty_space]

Classification based on constrained progressive Sequential Pattern mining: A proposed model

Yasmin R.Y.a, Saptawati P.a, Sitohang B.a

a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 IEEE.Sequential pattern is used to get knowledge of data that have time sequence. Sequential patterns contain knowledge that can be useful for users and can be utilized for classification. Sequential patterns become the input for classification process. Research on classification based on sequence was done using Apriori algorithm. However, Apriori takes a long time to search sequential patterns. Moreover, there were also many short and trivial sequential patterns found. Since they are less meaningful, they need to be eliminated. We propose classification based on modified PISA to overcome the problem. Modified PISA is a constrained progressive sequential pattern mining based on PISA. Modified PISA can search sequential patterns in accordance with multiple constraints. Constraints in sequential pattern mining are aimed to get sequential patterns that satisfy user needs. It also will reduce short and trivial sequential patterns that have less meaning to user. Classification based on modified PISA processes data to get sequential patterns which are used as Classifiable Sequential Patterns, CSP, to classify new data. This proposed model will improve classification speed, scalability and accuracy compared to classification based on sequence that utilizes Apriori algorithm.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Apriori algorithms,Classification process,Modified PISA,Multiple constraint,Progressive sequential tree,Sequential patterns,Sequential-pattern mining,Time sequences[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Classification by sequence,Modified PISA,Multiple constraints,Progressive sequential tree,Sequential pattern mining[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICODSE.2016.7936105[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]