[vc_empty_space][vc_empty_space]
Photovoltaic and EIS Performance of SnO2/SWCNTS Based – Sensitized Solar Cell
Abdullah H.a, Yunos N.H.a, Mahalingam S.a, Ahmad M.a, Yuliarto B.b
a Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
b Advanced Functionals Materials Laboratory, Engineering Physics Department, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 Published by Elsevier Ltd.Dye-sensitized solar cell (DSSC) is a type of thin film and third generation of photovoltaic devices. In this research, DSSC using tin dioxide/single wall carbon nanotube (SnO2/SWCNT) was successfully fabricated using doctor blade technique. The objective of this work is to determine the optimum concentration of SWCNT in SnO2-based DSSC. The thin films were varied with different SWCNT concentrations at 0.1%, 0.2%, 0.3% and 0.4% which acts as photoanode while Pt-Graphene was used as the counter electrode in DSSC. Atomic force microscopy (AFM) determined the surface roughness of the thin films. The pattern of X-ray Diffraction (XRD) shows the thin film’s structure and the crystallite size. The Uv-Vis result showed the bandgap of the thin films. The structural (AFM and XRD) and optical (Uv-Vis) analysis were done in order to analyse the factors that influence the performance of the DSSC. The electrochemical impedance analysis was also performed to investigate the electron transport inside the DSSC.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Doctor blade technique,Electrochemical impedance analysis,Electron transport,Morphological,Optimum concentration,Photovoltaic devices,Sensitized solar cells,SnO2-SWCNT[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Efficiency,Electron transport,Morphological,SnO2-SWCNT[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.proeng.2017.03.001[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]