[vc_empty_space][vc_empty_space]
Combined ultrafiltration-electrodeionization technique for production of high purity water
Wardani A.K.a, Hakim A.N.a, Khoiruddina, Wenten I.G.a
a Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© IWA Publishing 2017.Electrodeionization (EDi) is the most common method to produce high purity water used for boiler feed water, microelectronic, and pharmaceutical industries. Commonly, EDi is combined with reverse osmosis (RO) to meet the requirement of EDi feed water, with hardness less than 1 ppm. However, RO requires a relatively high operating pressure and ultrafiltration (UF) as pretreatment which results in high energy consumption and high complexity in piping and instrumentation. In this work, UF was used as the sole pretreatment of EDi to produce high purity water. Tap water with conductivity 248 μS/cm was fed to UF-EDi system. The UF-EDi system showed good performance with ion removal more than 99.4% and produced water with low conductivity from 0.2 to 1 μS/cm and total organic compounds less than 0.3 ppm. Generally, product conductivity decreased with the increase of current density of EDi and the decrease of feed velocity and UF pressure. The energy consumption for UF-EDi system in this work was 0.89-2.36 kWh/m3. These results proved that UF-EDi system meets the standards of high purity water for pharmaceutical and boiler feed water with lower investment and energy consumption than RO-EDi system.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Boiler feed water,Electro-deionization,High energy consumption,High operating pressure,High purity water,Ion removal,Pharmaceutical industry,Total organic compounds,Filtration,Membranes, Artificial,Osmosis,Ultrafiltration,Water Purification[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Conductivity,Electrodeionization,High purity water,Ion removal,Ultrafiltration[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.2166/wst.2017.173[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]