Enter your keyword

2-s2.0-85026233109

[vc_empty_space][vc_empty_space]

Transport and Retention Modelling of Iron Oxide Nanoparticles in Core Scale Porous Media for Electromagnetic Heating Well-Stimulation Optimization

Santoso R.K.a, Rachmat S.a, Putra W.D.K.a, Resha A.H.a, Hartowo H.a

a OGRINDO Research Consortium, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Understanding the transport and retention of iron oxide nanoparticles is critical in optimizing electromagnetic heating well stimulation. If the injected concentration or injection rate is too big, nanoparticles can build-up inside the pore throat, which can reduce the permeability of the reservoir. A numerical model has been created to describe the behavior of iron oxide nanoparticles in porous media. The model is coupling material balance equation and fluid flow in porous media equations. There are six parameters to be estimated through matching with experimental data: irreversible attachment rate, reversible attachment rate, irreversible attachment capacity, reversible attachment capacity, reversible detachment rate and permeability. All parameters were obtained directly through coreflooding result in previous study. We add Langmuir static isotherm test to limit the maximum adsorption capacity to provide a better estimation of concentration distribution. We use 1% NaCl solution as the base fluid and 45-50 mesh sand as the porous media. From the Langmuir static isotherm test, the maximum adsorption concentration is determined. Then, coreflooding is conducted using 10 ppm nanofluid and 12 cc/min injection rate. The proposed model is matched with the experimental data and its parameters are consistent with the maximum adsorption capacity provided from the test.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adsorption capacities,Concentration distributions,Coupling materials,Electromagnetic heating,Fluid flow in porous media,Injection rates,Iron oxide nanoparticle,Retention modelling[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1757-899X/214/1/012017[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]