Enter your keyword

2-s2.0-85027938703

[vc_empty_space][vc_empty_space]

Atmospheric range correction for two-frequency SLR measurements

Wijaya D.D.a,b, Brunner F.K.c

a Institute of Geodesy and Geophysics, Vienna University of Technology, Austria
b Geodesy Research Group, Bandung Institute of Technology, Indonesia
c Institute of Engineering Geodesy and Measurements Systems, Graz University of Technology, Austria

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]It has been widely known that the use of two-frequency Satellite Laser Ranging (SLR) system is limited by stringent precision requirements of the range measurements and the proper atmospheric model. Owing to the stringent requirements, this SLR system is impractical for the current requirement of SLR measurements within the framework of global geodetic observing system (GGOS). If in the future this stringent requirement could be met, this SLR system would be an attractive tool to reduce atmospheric propagation effects of SLR and would be of great benefit for the next generation of GGOS design. To anticipate possible future developments of the two-frequency SLR systems, we have developed a new atmospheric correction formula for the two-frequency SLR measurements. The new formula eliminates the total atmospheric density effect including its gradient and provides two terms to calculate the curvature effect and the water vapor distribution effect. While the curvature effect can be calculated by an accurate model, the required information about the water vapor distribution along the propagation path can be calculated using previous developments of optical delay modeling or alternatively using results from microwave measurements. Theoretical simulations using the two-frequency systems of the Graz and TIGO-Concepción stations shows that the new formula completely reduces all propagation effects at any elevation angle above 3° with an accuracy better than 1 mm. However, the required precision for the difference of the two-frequency SLR measurements, i.e. better than 45 μm for a single epoch, exceeds the capability of the current state of the art SLR systems. © 2011 Springer-Verlag.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Atmospheric propagation,Curvature effect,Dispersion effect,Perturbation,SLR,Water vapor[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/s00190-011-0469-8[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]