[vc_empty_space][vc_empty_space]
In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of lignin over high aluminum zeolites
Kurnia I.a, Karnjanakom S.a, Bayu A.a, Yoshida A.a, Rizkiana J.b, Prakoso T.b, Abudula A.a, Guan G.a
a Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8560, Japan
b Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 Elsevier B.V.Bio-oil derived from the fast pyrolysis of lignin contains a range of chemicals including a lot of oxygenated chemical components which should be selectively upgraded to improve the oil quality. In this study, in-situ catalytic upgrading of bio-oil during the fast pyrolysis of lignin over five types of high aluminum zeolites, i.e., H-Ferrierite, H-Mordenite, H-ZSM-5, H-Beta and H-USY zeolites, were performed. It is found that the channel structure, pore sizes and acidity of zeolite had great effect on the product distribution, coke formation, and deoxygenation. The highest yield of light oil was obtained by using H-ZSM-5 zeolite and the highest selectivity towards monoaromatic hydrocarbons was achieved by H-Beta zeolite. This study could provide a guidance for the selection of suitable zeolite for the in-situ catalytic deoxygenation of bio-oil derived from fast pyrolysis of lignin.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Catalytic upgrading,Channel structures,Chemical component,Deoxygenations,HZSM-5 zeolites,Light oil,Monoaromatic hydrocarbon,Product distributions[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Aromatic hydrocarbons,Channel structure,Deoxygenation,High aluminum zeolites,In-situ catalytic upgrading,Light oil,Pore size[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is supported by Aomori City Government and Hirosaki University Fund . I. Kurnia, S. Karnjanakom, and A. Bayu gratefully acknowledge the scholarship from Ministry of Education, Culture, Sport, Science and Technology (MEXT) of Japan.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.fuproc.2017.08.026[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]