[vc_empty_space][vc_empty_space]
Understanding Passive Layer Formation for Further Corrosion Management in Gas Production Pipes
Santoso R.K.a, Rahmawati S.D.a, Gadesa A.a, Wahyuningrum D.a
a Petroleum Engineering Study Program, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Corrosion is a critical issue during the development of a gas field, especially wet gas or retrograde gas field. Corrosion affects the management system of a field and further impacts the amount of investment. Therefore, accurate prediction of corrosion rate is needed to plan an effective preventive action before going further to the development phase. One of the important parameters that should be noticed to create an accurate prediction is the formation of the passive layer. In CO2-H2S environment, there will be three possibilities of passive layer: FeS, FeCO3 or no passive layer. In this study, we create mathematical models to determine the formed passive layer in each segment of the gas production tubing and pipeline. The model is built using Faraday’s Law and Thermodynamic approach to account the passive layer formation at different temperature, pH, corrosion rate and partial pressure of CO2 and H2S. From the simulation, it was found that there were three boundary conditions: no scale-FeS boundary, no scale-FeCO3 boundary and FeS-FeCO3 boundary. The first two boundaries evolved over a time as the concentration of Fe2+ ions was increasing. However, FeS-FeCO3 boundary remained steady as it was not affected by the addition of Fe2+ ions. Using sample case study, few variations were noticed at production pipeline and tubing. It was caused by the gas composition, which contained high CO2 and very low H2S. Boundary conditions only changed slightly over two days period.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Accurate prediction,Concentration of fe,Corrosion management,Development phase,Management systems,Preventive action,Production pipelines,Thermodynamic approaches[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was funded by DIKTI 2016.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/877/1/012062[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]