Enter your keyword

2-s2.0-85032275289

[vc_empty_space][vc_empty_space]

High Performance Carbon Monoxide Sensor Based on Nano Composite of SnO2-Graphene

Debataraja A.a, Muchtar A.R.a, Septiani N.L.W.a, Yuliarto B.a, Nugrahaautha, Sunendar B.a

a Department of Engineering Physics, Advanced Functional Materials Laboratory, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2001-2012 IEEE.SnO2-graphene nanocomposite thick films have been successfully synthesized using polyol method. Reflux with ethylene glycol as medium was employed to produce the nanocomposite. Crystal structure characterization using X-Ray diffraction shows the nanocomposites have good crystalinity without any impurity. Scanning electron microscopy and transmission electron microscopy characterization results show SnO2 has spherical shape and well distributed on the graphene layer. The size of SnO2 particles is around 5-8 nm. To confirm the improvement effect of grapheme addition to SnO2, sensor testing was conducted toward 30 ppm carbon monoxide (CO) gas at 150 °C compared with pure SnO2 and pure graphene. The sensor responses are 88.11%, 52.84%, and 0.93%, respectively.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Carbon monoxide sensor,Graphene layers,Graphene nanocomposites,Polyol methods,Sensing performance,Sensor response,Spherical shape,Structure characterization[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]carbon monoxide,Polyol method,sensing performance,SnO-graphene nanocomposite[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Manuscript received June 18, 2017; revised July 31, 2017 and September 19, 2017; accepted October 10, 2017. Date of publication October 18, 2017; date of current version November 22, 2017. This work was supported in part by the Research Grant through the Ministry of Research, Technology, and Higher Education from 2016 to 2017 and in part by the KK Research Grant, Institut Teknologi Bandung. The associate editor coordinating the review of this paper and approving it for publication was Dr. Camilla Baratto. (Corresponding author: Dr. Brian Yuliarto.) A. Debataraja, A. R. Muchtar, and N. L. W. Septiani are with the Advanced Functional Materials Laboratory, Department of Engineering Physics, Institut Teknologi Bandung, Bandung 40132, Indonesia (e-mail: adebataraja@yahoo.com).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/JSEN.2017.2764088[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]