Enter your keyword

2-s2.0-85032807304

[vc_empty_space][vc_empty_space]

Wideband printed dipole antenna fed using modified planar marchand balun

Munir A.a, Aviolanda S.a, Bharata E.a

a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 IEEE.In this paper, the development of wideband printed dipole antenna which is fed using modified planar Marchand balanced-unbalanced (balun) circuit is presented. The antenna is intended to operate at frequency of 3.3GHz with wideband response for wireless application. A modified planar Marchand balun is chosen to transform an unbalanced circuit of coaxial input to a balanced circuit of printed dipole antenna. The choice of Marchand balun type is due to its characteristics such as low loss, wide bandwidth response, and easy for planar structure implementation. The proposed antenna is implemented on a 1.6mm thick Arlon Diclad 527 dielectric substrate. The experimental characterization shows that the realized antenna has the bandwidth response of 600MHz for voltage standing wave ratio (VSWR) ≤2 ranges from the frequency of 3GHz-3.6GHz with the gain achievement of 5.69dBi-5.85dBi for the frequency range of 3.3GHz-3.4GHz.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Balanced-unbalanced (balun),Dielectric substrates,Experimental characterization,Marchand balun,Planar structure,Printed dipole antennas,Voltage standing-wave ratio,Wide-band[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Marchand balun,planar structure,Printed dipole antenna,wideband[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ELECSYM.2016.7861020[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]