[vc_empty_space][vc_empty_space]
Fast forward of the adiabatic spin dynamics of entangled states
Setiawan I.a,b, Eka Gunara B.a, Masuda S.c, Nakamura K.d,e
a Department of Physics, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Department of Physics Education, University of Bengkulu, Kandang Limun, Bengkulu, 38371, Indonesia
c College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, 272-0827, Japan
d Faculty of Physics, National University of Uzbekistan, Vuzgorodok, Tashkent, 100174, Uzbekistan
e Department of Applied Physics, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 American Physical Society.We develop a fast-forward scheme of the adiabatic spin dynamics of quantum entangled states. We settle the quasiadiabatic dynamics by adding the regularization terms to the original Hamiltonian and then accelerate it with the use of a large time-scaling factor. Assuming the experimentally realizable candidate Hamiltonian consisting of the exchange interactions and magnetic field, we solve the regularization terms. These terms, multiplied by the velocity function, give rise to the state-dependent counterdiabatic terms. The scheme needs neither knowledge of full spectral properties of the system nor solving the initial- and boundary-value problem. Our fast forward Hamiltonian generates a variety of state-dependent counterdiabatic terms for each of adiabatic states, which can include the state-independent one. We highlight this fact by using minimum (two-spin) models for a simple transverse Ising model, quantum annealing, and generation of entanglement.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Entangled state,Quantum annealing,Quantum entangled state,Regularization terms,Spectral properties,State-dependent,Time scaling factors,Transverse Ising models[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1103/PhysRevA.96.052106[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]