Enter your keyword

2-s2.0-85034223421

[vc_empty_space][vc_empty_space]

An innovative technique to suppress alkene-bond in green diesel by Mg–Fe basic soap thermal decarboxylation

Neonufa G.F.a,b, Soerawidjaja T.H.a, Indarto A.a, Prakoso T.a

a Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, Indonesia
b Department of Agriculture Product Technology, Universitas Kristen Artha Wacana, Kupang, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017, © 2017 Informa UK Limited, trading as Taylor & Francis Group.The catalytic effect of magnesium and magnesium–zinc or copper(II), iron(III), aluminium(III), chromium(III) metal combination on ratio of the alkane to 1-alkenes and carbon number distribution in the green diesel product from metal basic soaps’ decarboxylation has been studied. Palm stearin was chosen as a model compound to produce metal basic soaps. Batch decarboxylation of metal basic soap was conducted at 350°C and atmospheric pressure for 3 h. Ratio of alkane to 1-alkene at the green diesel product was found following this order: Mg–Fe (14.6%) > Mg–Al (11.8%) > Mg–Cu (10.1%) > Mg–Zn (4.7%) > Mg–Cr (3.1%) > Mg (2.9%). Mg–Fe metal combination was preferable because it has high selectivity to alkane and capable of suppressing the 1-alkane formation during the metal basic soap decarboxylation process.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Carbon number distribution,Catalytic effects,decarboxylation,Decarboxylation process,Green diesels,Innovative techniques,Metal combination,Thermal decarboxylation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]alkane,Basic soaps,decarboxylation,green diesel,metal combination[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by the Badan Pengelola Dana Perkebunan Kelapa Sawit Indonesia (BPDPKS) under 2017 grant.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1080/01430750.2017.1399451[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]