[vc_empty_space][vc_empty_space]
Repeated thermal shock processes for fragmenting zeolite particles and the possible existence of a critical size
Cahyaningrum D.T.a, Rahmayanti H.D.a, Wibowo E.b, Khairurrijala, Abdullah M.a,c
a Department of Physics, Bandung Institute of Technology, Bandung, 40132, Indonesia
b Department of Engineering Physics, Telkom University, Bandung, 40257, Indonesia
c MIBE S&T Institute, Bandung, 40295, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 Elsevier B.V.In our previous work, we observed that a thermal shock process could fragment zeolite particles to approximately one-fourth of the initial size. Here, we further investigate this finding by applying repeated thermal shocks to the zeolite particles and observed the effect on the resulting particle size. We determined that repeated thermal shocks progressively reduce the zeolite particle size, though the resultant size was not always one-fourth of the previous size. We claim that the thermal shock generated a high-temperature gradient, and the zeolite structure converted into a quartz structure at the point at which the temperature gradient reached a maximum, resulting in a silicon-rich surface of the produced particles (higher Si/Al ratio). We also developed a model to predict the possible existence of a critical radius, below which the size will not be reduced by thermal shock. The critical radius decreases when the shock temperature increases. The prediction is qualitatively consistent with the observed final particle size after applying different shock temperatures.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Critical radius,Critical size,High temperature gradient,Quartz structure,Shock temperature,Zeolite particle sizes,Zeolite particles,Zeolite structure[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Critical radius,Quartz generation,Repeated thermal shock,Zeolite[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The PMDSU (Program Magister Doktor Sarjana Unggul) research grant from the Ministry of Research and Higher Education, Republic of Indonesia No. 1371b/I1.C01.2/KU/2017 for HDR is gratefully acknowledged. Grateful thank to valuable suggestions and corrections from reviewers.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.powtec.2017.11.053[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]