Enter your keyword

2-s2.0-85037048122

[vc_empty_space][vc_empty_space]

Implementation of leader-follower formation control of a team of nonholonomic mobile robots

Widyotriatmo A.a, Joelianto E.a, Nazaruddin Y.Y.a, Prasdianto A.a, Bahtiar H.a

a Instrumentation and Control Research Group Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© CC BY-NC.A control method for a team of multiple mobile robots performing leader- follower formation by implementing computing, communication, and control technol- ogy is considered. The strategy expands the role of global coordinator system and controllers of multiple robots system. The global coordinator system creates no- collision trajectories of the virtual leader which is the virtual leader for all vehicles, sub-virtual leaders which are the virtual leader for pertinent followers, and virtual followers. The global coordinator system also implements role assignment algorithm to allocate the role of mobile robots in the formation. The controllers of the individual mobile robots have a task to track the assigned trajectories and also to avoid collision among the mobile robots using the artificial potential field algorithm. The proposed method is tested by experiments of three mobile robots performing leader-follower formation with the shape of a triangle. The experimental results show the robustness of formation of mobile robots even if the leader is manually moved to the arbitrary location, and so that the role of a leader is taken by the nearest mobile robot to the virtual leader.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Collision avoidance,Formation,Leader-follower,Multiple mobile robots,Nonholonomic,Trajectory control[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by the Ministry of Research, Technology and Higher Education of Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.15837/ijccc.2017.6.2774[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]