Enter your keyword

2-s2.0-85038590144

[vc_empty_space][vc_empty_space]

Void reactivity aspect and fuel conversion potential of heavy water cooled thorium reactor

Permana S.a, Waris A.a, Suud Z.a, Sekimoto H.b

a Nuclear Physics and Bio Physics Research Division, Department of Physics, Bandung Institute of Technology, Bandung, 40132, Indonesia
b Tokyo City University, Tokyo, 158-8557, Japan

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Copyright © 2016 John Wiley & Sons, Ltd.Design study on heavy water cooled thorium breeding reactor has been investigated by adopting a nuclear equilibrium state model. Conversion ratio, as an important index, has been evaluated to estimate the breeding capability of the reactors. Void reactivity coefficient has also been investigated to evaluate performance index of safety aspect, which is based on the criticality performance of the reactors during voided condition. In addition, moderator-to-fuel ratio has also been employed to analyze its effect to the required enrichment, conversion ratio, and void reactivity coefficient as well as different burnups and fuel pin diameter effects. Void reactivity coefficient indicates a criticality condition of the reactor when some coolants are lost. If the negative value of void reactivity is achieved, it means that the reactor has less reactivity condition as well as less power production when lost of coolant occurred. Higher fuel conversion capability, that more nuclear fuel are produced, those additional fuel productions can be used for next operation or for other reactors. The results show that higher fuel conversion ratio can be achieved for less moderator-to-fuel ratio because of the harder neutron spectrum effect, while it requires more fissile content of 233U to maintain the reactor operation from fission reaction. Higher burnup gives less conversion ratio because some fissile materials are used to maintain longer reactor operation, and at the same time, it requires more initial required fissile 233U for higher burnup. In addition, it requires less fissile 233U for thicker fuel pin diameter, while its conversion ratio becomes higher, and void reactivity coefficient is more negative for thicker fuel pin diameter. The results also show that thorium utilization on heavy water cooled reactor gives all negative void reactivity values, which means that the system has a safety condition in terms of void reactivity condition. At the same time, it shows some feasible conditions for obtaining fuel breeding to increase the sustainability of nuclear fuel. Copyright © 2016 John Wiley & Sons, Ltd.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]breeding,Criticality condition,Fissile materials,Fuel conversion,Nuclear equilibrium state,Performance indices,Void reactivity,Void reactivity coefficient[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]breeding,fuel conversion,safety,thorium,void reactivity,water cooled[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1002/er.3594[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]